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Abstract: Imaging through scattering media faces great challenges. Object information will be seri-

ously degraded by scattering media, and the final imaging quality will be poor. In order to improve 

imaging quality, we propose using the transmitting characteristics of an object’s polarization infor-

mation, to achieve imaging through scattering media under natural light using an improved U-net. 

In this paper, we choose ground glass as the scattering medium and capture the polarization images 

of targets through the scattering medium by a polarization camera. Experimental results show that 

the proposed model can reconstruct target information from highly damaged images, and for the 

same material object, the trained network model has a superior generalization without considering 

its structural shapes. Meanwhile, we have also investigated the effect of the distance between the 

target and the ground glass on the reconstructing performance, in which, and although the mis-

match distance between the training set and the testing sample expands to 1 cm, the modified U-net 

can also efficaciously reconstruct the targets. 
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1. Introduction 

Scattering media, such as the atmosphere [1–3], underwater environments [4,5], and 

biological tissues [6,7], are among the important factors affecting imaging quality in real-

ity. When light passes through a scattering medium, the ballistic light decays rapidly, and 

target information will be severely corrupted. In order to get imaging results that are as 

clear as possible, many typical imaging techniques have been proposed, including trans-

mission matrices [8,9], wavefront shaping [10], light storage effects [11,12], and ghost im-

aging [13–16]. However, these methods have certain limitations and so do not work better 

in complex scattering media situations. Moreover, they cost a lot of time and money. 

Following developments in polarization transmission theory in recent years [17,18], 

polarization technology now plays an important role in solving target imaging from scat-

tering media [19–21]. In recent years, physical models and image processing methods 

based on polarization information have been proposed to improve the clarity of imaging 

in scattering media [22,23]. In 1996, J.S. Tyo et al. proposed the Polarization Difference 

(PD) method for imaging through scattering media [24]. In 2001, Y.Y. Schechner et al. 

added polarization effects to the atmospheric defogging model [25]. Liang et al. proposed 

that the estimated parameters of the angel of polarization (AoP) can be used in defogging 

[26], which not only significantly improves the clarity of blurry images but also can be 

applied to dense fog environments [27]; they also tried to fuse visible and infrared polar-

ized images together to defog and improve target recognition efficiency [28]. Hu et al. 

proposed a recovery algorithm based on the estimation of polarization differential imag-

ing that takes into account the previously overlooked polarized light radiated by the 
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target itself and proves that it is feasible to improve and optimize the quality of the recov-

ered image [29]. In addition, they also proposed a method based on corrected transmit-

tance to clearly improve the quality of the underwater image [30]. Shao et al. developed 

an active polarization imaging technology based on wavelength selection [31], which uses 

the dependence of scattering light at different wavelengths in a turbid underwater situa-

tion. In addition, Guo et al. obtained the Muller matrix (MM) of a scattering medium based 

on the Monte Carlo (MC) algorithm [3] and proposed a polarization inversion method to 

study polarization transmission characteristics in layered dispersion systems [15,17,32–

34], a layered atmosphere [19], and underwater environments [5]. 

At the same time, deep-learning (DL) techniques have been verified to be a very ef-

fective method for damaged image recovery by researchers who used DL to find a map-

ping relationship between speckled images caused by scattering and original targets [35]. 

A “one to all” convolutional neural network (CNN) can learn the characteristic infor-

mation in speckle patterns obtained in the same scattering medium [36]. Li et al. estab-

lished the “IDiffNet” network structure, which is made up of a tightly connected CNN 

architecture, to learn the characteristics of the scattering medium and proved that the net-

work’s superior generalization capability through the network still works in spite of input 

data from other scattering media [37]. Lyu et al. proposed a hybrid neural network based 

on computational imaging in thick scattering media to reconstruct target information hid-

den in the scattering medium [38]. Sun et al. reconstructed the scattered spot image using 

the DL algorithm in the low-light environment, which cannot be imaged using a tradi-

tional imaging method because the resulting spot contains limited information and has 

the influence of Poisson noise [39]. Zhu et al. used the autocorrelation imaging of scattered 

spots to learn the generalized statistical invariants of the scattering medium using DL net-

works, which improves the applicability of the network model [40]. The combination of 

polarization information and the DL method has also become an important direction of 

imaging reconstruction. Li et al. used Q information to train the network and prove that 

the model-Q has superior generalization and robustness in different aspects [41]. Li et al. 

proposed the PDRDN to achieve the removing of the underwater fog effect using four angle 

polarization pictures (0°, 45°, 90°, 135°) [42]. In addition, DL based on polarization is applied 

to target detection [43–45], underwater imaging [46], image denoising [47], and image fusion 

[48], etc., which can get higher detection accuracy, significant noise suppression, and effec-

tive removal of the scattered light, and can obtain more detailed target information. How-

ever, data-driven network models depend too much on the data, resulting in limited gener-

alization capabilities, which is also a major difficulty in applying deep learning to reality. 

On the one hand, training the network with stable target features will improve the stability 

of the network. Even if the external environment changes within a certain range, it will not 

affect the reconstruction results of the trained model. Therefore, in order to improve the 

stability of the model, we use the polarization information of the target as the training set, 

which carries stable target features during transmission. The stable target feature carried by 

the polarization information is capable of adapting to many changes of environment, 

thereby improving the generalization ability of the network model. 

Effective physical priors can prompt networks to find an optimal solution for differ-

ent situations. The degree of polarization (DoP) is the ratio of the polarization to the total 

light intensity, and it can be considered as the most intense polarization state. Thus, in this 

paper, we use DoP to focus the polarization characteristics of the scattering system and 

then utilize the powerful DL to obtain the polarization characteristics from the scattering 

system, which can solve the generalization problem of single material objects in scattering 

scenes and reduce the dependence of deep learning on data. Experimental results demon-

strate that the network model trained by DoP has a better recovery performance, and for 

targets that are not in the training set, the model can still recover them with high accuracy. 

What is more, the model can still work when there is a mismatch distance between the 

training set and the testing sample. Moreover, the influence of polarization characteristics 

also provides a certain basis for the application of deep learning in polarization 
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information-based remote sensing. Finally, we present the quantitative-evaluation results 

with multiple indicators, which show the accuracy and robustness of the scheme, and re-

flect the great potential of combining physical knowledge and deep learning technology. 

2. Materials and Methods 

2.1. Physical Foundation 

Light can be represented by the Stokes vector S = (I, Q, U, V)T whether it is polarized 

or non-polarized [49]. Elements in a Stokes vector can be obtained from the intensity of 

four angles (0°, 45°, 90°, 135°): 
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  (1) 

where I is the total light intensity, Q is the difference between horizontal and vertical com-

ponents, U is the difference between 45° and 135° components, and V represents the dif-

ference between right-handed and left-handed components. The components in Stokes 

vector satisfy: 

2 2 2 2I Q U V + +
  

(2) 

The Stokes vector is relative to the light intensity. An existing focal-plane polarization 

camera can directly obtain polarization pictures of four angles (0°, 45°, 90°, 135°). There-

fore, we can easily get three elements of (I, Q, U), minus the V component. 

Polarization information of light can be destroyed by scattering media during the 

transmission process, and the process can be expressed as: 

Sout objMS=
  

(3) 

where M is the Muller matrix (MM) of the scattering media, Sout represents the Stokes vec-

tor of output light, and Sobj represents the object’s Stokes vector in the incident light. The 

aim is to reconstruct targets using the Sobj; therefore, Equation (3) is transformed and ex-

pressed as follows: 

1Sobj outM S−=
  

(4) 

where M−1 is the inverse of M, which contains the polarization characteristics of the scat-

tering media. For scattering media, the larger optical thickness (OT) becomes, the more 

damaging target polarization information will be; therefore, the detector can only capture 

spots which contain limited information from the target. For targets, when the difference 

of polarization characteristics between target and background is slight, the receiver cannot 

completely distinguish them. 

Reconstructing the target can be regarded as an inverse process of imaging in scat-

tering media. The DL as an excellent method can be used to solve the inverse process. 

Inspired by this, we utilized the powerful fitting capacity of DL to obtain the map between 

speckles and the original images. In order to solve the inverse problem better, it is neces-

sary to make full use of the polarization physical priors. Specifically, the learning frame-

work consists of the pre-physical step and post-neural network step based on a physical 

prior, which can be seen in Figure 1. Firstly, the pre-physical step is used to acquire the 

linear-polarization images, and the DoLP can be expressed as: 
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As the ratio of the linear-polarization component to the total light intensity, DoLP is 

a common polarization parameter and can be used to describe the polarization character-

istics of the scattering systems. Therefore, when we use DoLP images as a training set to 

train the network, we can filter out redundant information with more effective character-

istics for training the network. 

 

Figure 1. Learning framework. 

In addition, the polarization information is very sensitive to the material and the 

structure of the targets. Therefore, the generalization performance of the model must be 

most closely related to the scattering medium and the polarization properties of targets. 

The model trained by the target with the same material will have a broader generalization 

about materials. 

2.2. Measurement System 

To get the dataset, we set up a polarization scattering imaging scene in experiments; 

the schematic of the experimental setup is shown in Figure 2. In order to capture more 

target information, we placed a polarizer in the front of the LED light source to provide 

polarization illuminance. The light of S = (1, 1, 0, 0)T can be modulated by the polarizer, 

which facilitates the implementation of the polarization algorithm [50]. Then, the polar-

ized light irradiates to the target and is reflected from it. Finally, the reflective light trans-

mits through the ground glass and is captured by the polarization camera (DoFP). In our 

experiments, the targets are a series of handwritten digits with the ink on the white paper. 

We put the target at a certain distance behind the ground glass of 5 mm and define the 

distance between the target and the ground glass as “d”. 
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Figure 2. Schematic of the experimental setup. 

The polarization camera in our experiment is a commercial DoFP (division of focal 

plane) polarization camera (LUCID, PHX055S-PC) with pixel counts of 2048 × 2448, whose 

pixel array surface is covered with a polarization array consisting of four micro-polarizers 

with four different polarization orientations of 0°, 45°, 90°, and 135°, respectively. The po-

larization image of the four angles can be used to calculate the image of DoLP. Here, we 

have captured 200 images with the DoFP cameras and expanded the dataset to 1000 train-

ing sets by data enhancement, such as rotation, clipping, etc.; of them, 900 are used for 

training and 100 for verification. 

2.3. Neural Network Design 

With the developments of DL technology, many excellent network structures have 

been built in the field of imaging reconstructions. U-Net, as a fully convolutional neural 

network structure, has been also proposed for semantic segmentation of medical images. 

Now it has been showing its superior effects on image reconstruction. The principle of U-

Net is similar to that of the self-coder model. Our goal is to extract and reconstruct the 

target information from the polarization speckles. This process can be regarded as the 

process of encoding and decoding. Moreover, the skip-connection structure contained in 

the U-Net solves the problem of gradient explosion and gradient disappearance during 

training in deeper networks, which is one of the reasons for its excellent performance. 

DenseNet is a network structure proposed in 2017 [51], and it is a composite layer com-

posed of multiple dense blocks, each of which is connected to the next layer by means of 

a connection operation. That makes the transmission of features and gradients more effi-

cient and the training process of the network easier [52]. 

In our scheme, we change the number of convolutional layers and channels of the 

original U-Net network to form an improved U-Net based DL network, as shown in Fig-

ure 1. We replace a single convolutional layer with dense blocks for feature extraction, 

which will improve the network performance. In the dense block, we use a 3 × 3 convolu-

tional kernel and a circle of padding to ensure that the input and output feature map size 

is unchanged. Each dense block is connected to the batch normalization and linear activa-

tion functions. As the number of network layers and filters increase, the max pooling layer 

with a step size of 2 × 2 is used to reduce the image length and height to half of the original. 

In addition, the decoder acts as the inverse of the encoder, and the last layer of each de-

coder is an up-pooling layer. Throughout our network model, the activation function uses 

a rectified linear unit (ReLU) that enables fast and efficient training of the network. Mean-

while, in order to reduce the occurrence of overfitting, we add a dropout layer. After that, 

the images with 256 × 256 pixels can be reconstructed by convolutional layers. In addition, 

we calculate parameters and floating-point operations (FLOPs) to assess the complexity 
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of the network, which are 53.86 M and 68136.58 M, respectively. During training, the loss 

function reflects the model’s ability to fit the data. Here, we use MAE as the loss function: 

1 1

1
( , ) ( , )

M N

i j

MAE X i j Y i j
M N = =

= −


   (6) 

where X(i, j) and Y(i, j) represent the values of (i, j) pixel in the reconstruction image and 

in the ground truth, respectively, and M and N are the size of the image. 

We trained the model in an image processing unit (NVIDIA RTX 3080) using a 

Pytorch framework with Python 3.6, training 200 epochs. The optimizer is the Adam (Add 

Momentum Stochastic Gradient Descent) with a learning rate of 0.001. 

3. Results 

The polarization characteristics of the target are not easily affected by the scattering 

media during transmission. Therefore, the model trained with the polarization infor-

mation of the target is more stable. Therefore, in this section, we designed different test 

experiments to verify the stability of the trained model with the polarization information 

of the target. 

3.1. Subsection 

Unlike the speckled images obtained by laser irradiations, the images obtained by 

emitting natural light do not have obvious light and dark distributions, and the whole of 

them is cloudy. Moreover, the greater the distance between the ground glass and the tar-

get, the more blurred the outline of the target. At the same time, the spectral width of light 

reduces the associated length of scattered light and the FoV of the imaging system in a 

real-world experiment [53,54]. The experiment is set up without ambient light, and we get 

images only by irradiating the targets with a white-light LED. The results for the circum-

stance of d = 4.0 cm are shown in Figure 3. 

 

Figure 3. (a) Original target; (b) Imaging by IX; (c) Imaging by I; (d) Imaging by DoP. 

With increasing d, the energy of light reaching the ground glass will decrease; there-

fore, the target information passing through the scattering medium will also be decreas-

ing. We collected the data at a distance of d = 4 cm, where the target profile was completely 

obscured by the noise from the ground glass, and the calculated DoP image also cannot 

distinguish the target from the background. Under this condition, we chose the DoP im-

ages of the targets as the training set and used the images of targets without the scattering 

medium as the related labels. The sizes of the scattering images and labels are the same, 

256 × 256. After collecting and classifying the data, the proposed methods can be used for 

training and testing. 

In the case of d = 4 cm, we prepared 200 scattering images used as the training sets, 

which are the DoP imaging results of different structural targets (10 handwriting digits: 

0~9) transmitting through the ground glass. Original images without scattering served as 

the respective labels. We also expanded 200 scattering DoP images to 1000 DoP images, 
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in which 900 and 100 images served as training set and validation set, respectively; the 

trained network can be called the Model-DoP. 

3.2. The Results of Reconstructing Untrained Structural Targets with DoP 

In this section, we set targets with different structures, which have not been trained. 

If the trained Model-DoP can reconstruct those untrained targets, it proves that our pro-

posed method has superior stability on the structure of targets. As shown in Figure 4a, the 

scattering images are not the samples used to train the Model-DoP, and after transmitting 

through the ground glass, the corresponding scattering DoP images cannot be distin-

guished, as depicted in Figure 4b. However, they can be reconstructed well by the trained 

Model-DoP (as shown in Figure 4), in which the edge of the targets can be identified ac-

curately. The results reflect that the scattering DoP images as training sets can effectively 

drive the network to learn the polarization characteristics of the different targets, which 

is helpful to achieve the target reconstruction. 

 

Figure 4. The test results of untrained targets: (a) Ground truth; (b) Scattering DoP images; (c) Im-

ages reconstructed by the Model-DoP. 

In order to further verify the generalization of the Model-DoP, we changed the struc-

ture of the target to test the Model-DoP trained by the digit target. First, we replaced digit 

targets to English alphabet targets while the background remained unchanged. The re-

constructed results are shown in Figure 5. Figure 5b shows the scattering DoP images, and 

Figure 5c the corresponding reconstructed results. Moreover, we also used some graphics 

as the targets to further demonstrate the diversity and complexity of the generalization of 

the Model-DoP. The ground truth, results of the scattering DoP images and reconstructed 

images are shown in Figure 6. In the case of the limited number of training data, the 

Model-DoP can reconstruct the untrained targets, including both English alphabets and 

graphical data, which reflects that the Model-DoP studies not only the mapping relation-

ship between pixels but also the polarization characteristic of different materials. There-

fore, the targets with different shapes can be also reconstructed as long as they are made 

of the same material. 
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Figure 5. The reconstructed results for untrained alphabetical targets: (a) Ground truth; (b) Scatter-

ing DoP images; (c) Images reconstructed by the Model-DoP. 

 

Figure 6. The reconstructed results for untrained graphic targets: (a) Ground truth; (b) Scattering 

DoP images; (c) Images reconstructed by the Model-DoP. 

The Structural Similarity Index (SSIM) is a common indicator to evaluate the image 

quality and measure the similarity of images [55]. Here, we also use the SSIM to evaluate 

the quality of the reconstructed targets, for quantitatively describing the results of the re-

construction and performance of our network. The SSIM consists of three parts: bright-

ness, contrast, and structure. Given the original image and the predicted image (X, Y), the 

SSIM of them can be calculated as follows: 

1 2

2 2 2 2

1 2

(2 )(2 )
( , )

( )( )

X Y XY

X Y X Y

C C
SSIM X Y

C C

  

   

+ +
=

+ + + +
  (7) 

where μx is the mean of X, μY is the mean of Y, σx is the variance of X, σY is the variance of 

Y, σXY is the covariance of X and Y, and C1 and C2 are small normal numbers used to avoid 

the zero denominator. The SSIM value range is 0 to 1. The higher the SSIM value, the more 

similar the image. 

The SSIM of three graphs with different complexity and diversity do not have much 

difference, which can be seen from Table 1. Although the SSIMs have a downward trend 

with increasing complexity and diversity, the overall fluctuation is not too large. The 

graphic targets, whose relevance to the target in the training set is the weakest, still have 

more than 70% similarity. 
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Table 1. The average SSIM of the target reconstructions for Figures 5–7. 

Targets Digital Alphabetical Graphic 

SSIM 0.7850 0.7701 0.7688 

3.3. The Performance of Model-DoP on the Different Polarization Characteristics 

To further investigate the sensitivity of the model-DoP to the polarization properties 

of the target, we conducted a test using targets composed of other materials that had not 

been trained. Firstly, the target material was set to steel, and other conditions were un-

changed with the background being paper. Therefore, the targets can be called “Steel-

Paper” targets, as depicted in Figure 7a. Then, scattering DoP images under natural light 

condition were obtained, as shown in Figure 7b, and images were entered into the original 

“Ink–Paper” trained model. The specific reconstruction results are shown in Figure 7c. 

Due to the high reflectivity and low deflection characteristics of steel, the image obtained 

through the scattering medium retains a large amount of target information. It can also be 

seen that the polarization characteristics of steel and paper are quite different from Table 

2 [19,56]. Therefore, the model-DoP can also identify the outline of the target. 

 

Figure 7. The test results of model-DoP for the untrained target materials. (a) Ground truth with 

target-background as Steel-Paper; (b) Scattering DoP images; (c) Reconstructed images by the 

Model-DoP. 

Table 2. Mueller matrix elements of different materials [19,56]. 

Material m22 m33 

Paper 0.265 0.247 

Wood 0.215 0.16 

Ink 0.892 0.921 

Steel 0.980 0.977 

In addition, the targets can also be set as “Ink–Wood” targets, as shown in Figure 8a, 

in which the background material is set as wood. The reconstruction results are demon-

strated in Figure 8c. From Table 2, because the value of corresponding elements of wood 

and paper are similar, the model-DoP trained by “Ink–Paper” can distinguish the target 

and the background. Moreover, the difference between wood and paper impacts the result 

of the model trained by “Ink–Wood”, but it cannot affect the identification and recovery 
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of the target globally. Although the model does not recover well for letter patterns, this 

problem should be solved by enriching target structures and materials in the training sets. 

 

Figure 8. The test results of model-DoP for the untrained background materials. (a) Ground truth 

with target-background as Ink–Wood; (b) Scattering DoP images; (c) Images reconstructed by the 

Model-DoP. 

Finally, the targets have been set as “Steel-Wood” targets, as shown in Figure 9a, in 

which the materials of target and background are set as steel and wood, respectively. The 

model reconstruction results are demonstrated in Figure 9c. The wood background can be 

distinguished, but the texture cannot be restored. The steel target cannot be recovered 

with the complete structural information, but the difference in polarization characteristics 

of the edges can be captured. From Table 2, it can be seen that the difference of corre-

sponding elements of ink and steel is very large. Therefore, the target cannot be recovered 

very well because of that. When the material is not trained by the DL net, the performance 

of the target reconstruction will be reduced. The effect of the reconstruction is related to 

the difference of the polarization properties of the test material and the training material. 

Therefore, based on the sensitivity of the polarization characteristics of the target, the 

model, which is trained by the same material target, has a certain cross-material generali-

zation for targets with similar polarization characteristics. It should be noted here that if 

we train more materials in the DL net, the reconstruction performances would be en-

hanced for different materials’ targets and backgrounds. 
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Figure 9. The test results of model-DoP for the untrained target and background materials. (a) 

Ground truth with target-background as Steel–Wood; (b) Scattering DoP images; (c) Reconstructed 

images by the Model-DoP. 

3.4. The Performance of Model-DoP on the Generalization of the Imaging Distance 

Different materials have different polarization characters which can be described by 

a 4 × 4 matrix called MM. At the same time, when targets and scattering media are deter-

mined in a system, the MM of those will not change. Therefore, the trained Model-DoP is 

still able to reconstruct the targets with different imaging distances (the targets move 

within a certain range). Therefore, we have also explored the influence of targets at differ-

ent locations by changing the imaging distances between the ground glass and the targets. 

We capture the scattering DoP images at the distances of d = 3.5 cm, 4.0 cm, 4.25 cm, 4.5 

cm, 5.0 cm and 5.5 cm, and reconstruct the target images through the Model-DoP trained 

in the imaging distance of d = 4 cm. The results are shown in Figure 10. 



Photonics 2023, 10, 204 12 of 16 
 

 

 

Figure 10. The reconstructed results at different imaging distances by the Model-DoP trained in the 

imaging distance of d = 4 cm. (a) Ground truth; (b) d = 3.5 cm; (c) d = 4.0 cm; (d) d = 4.25 cm; (e) d = 

4.5 cm; (f) d = 5.0 cm; (g) d = 5.5 cm. 

It can be seen that the Model-DoP can reconstruct targets at different imaging dis-

tances. When d = 3.5 cm, the information of images is enough to provide features for the 

Model-DoP, and the good retention of the target polarization information strongly im-

proves the imaging quality. Besides, when d is longer than 4.0 cm, the Model-DoP still has 

a certain generalization ability which is because the model can still obtain some part of 

the targets’ polarization characteristics, allowing the target hidden behind the noise to still 

be reconstructed until d = 5.0. However, at the imaging distance of d = 5.5 cm, the model 

cannot reconstruct the target details, though it can still distinguish between the back-

ground and the target. 

The trained Model-DoP by polarization information is less affected by scattering me-

dia because DoP carries stable target features. Therefore, when the target moves within a 

range, the Model-DoP can still reconstruct it, proving that our proposed method can be 

adapted to imaging with telescopic distance. Table 3 shows the SSIM of recovered images 

with increasing imaging distances, where the SSIM is gradually decreasing; however, the 

magnitude of the decrease is relatively small, which verifies that the DoP can retain the 

transmitting polarization information in scattering media to improve the stability of the 

network. 

Table 3. The average SSIM for the reconstructed targets in Figure 10. 

Different d d = 3.5 d = 4.0 d = 4.25 d = 4.5 d = 5.0 d = 5.5 

SSIM 0.7557 0.7782 0.7443 0.7339 0.7205 0.6321 

3.5. Compared with the Model-I, Model-IX and Model-Q 

DoP can filter out redundant information to a certain extent and focus on the polari-

zation characteristics of targets. Then, the model with both accuracy and stability can be 
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obtained with a small number of datasets. In order to prove that the DoP images as train-

ing data are better than I, IX and Q images, we trained the network to obtain Model-I, 

Model-IX, Model-Q and Model-DoP, respectively. Unlike before, we needed to exclude the 

compensatory effect of emitted polarized light on polarized images, making the difference 

between different results of the model more obvious. We took the polarizer off and got a 

series of data directly in natural light conditions. The compared results between those of 

Model-I, Model-IX, Model-Q and Model-DoP have been investigated and are demon-

strated in Figure 11. 

 

Figure 11. The comparison of Model-I, Model- IX, model-Q and Model-DoP. (a) Ground truth; (b) 

Model-IX; (c) Model-I; (d) Model-Q; (e) Model-DoP. 

From Figure 11b, it can be seen that targets and backgrounds obtained from Model-

IX can be distinguished; however, the contrast of recovered images is low, and the target 

structure is distorted, especially letter and graph targets. The IX component also carries 

the polarization information of targets, but it also has too much redundant information, 

making the useful polarization information of targets less prominent. Therefore, in the 

case of the same amount of data, the network cannot efficiently capture the target polari-

zation information for model building. 

The contrast of the result from Model-I is better than that from Model-IX from Figure 

11c, because the intensity is obtained by adding IX and IY, which has more information 

than IX alone. However, the background of the result of the Model-I has some noise, espe-

cially the edge section. It is precisely because the network trained by intensity cannot ac-

curately distinguish different polarization characteristics. 

Thanks to the Q component, which is the difference between IX and IY, it will elimi-

nate some effect of scattering. Therefore, in Figure 11d, the background of the result from 

the Model-Q has less noise than that from model-I. However, part of the target may not 

be recovered completely when the gap between the test target and the training target is 

large, which may contribute to that the Q component may cancel out some target infor-

mation when the polarization characteristics of the target are not very strong. Therefore, 

the model-Q has certain restrictions on the material. In Figure 11e, the results of Model-

DoP not only recover the goal, but also accurately distinguish the part with different po-

larization characteristics, although it is not a full reflection. Meanwhile, there is no need 
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to consider the offsets of the targets’ polarization information in the DoP information. The 

quantitative comparison of the four models is shown in Table 4, which further confirms 

the above information and discussion. 

Table 4. The average SSIM for the reconstructed targets in Figure 11. 

Different Model Model-IX Model-I Model-Q Model-DoP 

SSIM 0.7498 0.7501 0.7541 0.7746 

4. Conclusions 

In this article, we combine polarization theory and DL technology to propose a novel 

method for reconstructing targets. The neural network trained by the DoP can effectively 

learn the polarization characteristics of different targets and demonstrate certain capabil-

ity of generalization. Moreover, using the DoP as the polarization information stream re-

veals a better performance in the reconstruction results, which can provide more target 

details. Our explorations demonstrate that the polarization information combining the 

improved U-net shows promise in solving the problem of the information extraction and 

target identification under strong scattering environments. What is more, for the target 

with different imaging distances, it can still be reconstructed. It should be further noted 

that if we use the coherent laser as the illumination source, the much higher performance 

should be expected, because the speckle effect will be enhanced, as well the characteristics 

of the scattering fields. In the following work to improve the performance of polarization 

scattering imaging, we will focus on the following points: (i) extracting usable polarization 

information from multi-material target information to target reconstruction for more sce-

narios; (ii) because there is more than one physical quantity that can express the polarization 

characteristics of the target and they can reflect the different aspects and characteristics of 

the target, the multi-dimensional polarization information can be used to improve the ex-

pression of the target features for improving the performance of target reconstruction. 
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